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1 Additional Monte Carlo Simulation Results

This online appendix provides some additional simulation results that are not reported in the paper.

In particular, we present results with (i) data simulated from models with structural breaks and

(ii) data simulated from a real business cycle (RBC) model.

1.1 Structural Breaks

The simulation results reported in the paper are obtained under the maintained hypothesis of an

underlying low frequency co-movement in the data for � 6= 0, which is implicitly assumed to be

structural in nature. We �nd that this leads to a bias in the IRFs of the di¤erenced VAR. Fernald

(2007) provides evidence that the co-movement is due to a similar pair of breaks occurring in both

series, giving rise to a common high-low-high pattern. Treating the similarity of the breaks in the

two series as coincidental or driven by exogenous factors that should not be used in identifying

technology shocks, he shows that this type of low frequency co-movement can result in misleading

IRFs from the levels VAR. This contrasts with the conclusions of the previous section.

The simulations discussed below are intended to provide some insight into the reasons underlying

the di¤erences between our results and the results in Fernald (2007). They illustrate that the

critical di¤erence does not hinge on whether the low frequency co-movement is due to common

structural breaks. Rather, it is instead Fernald�s (2007) assumption that the observed low frequency

correlation is coincidental that leads to his conclusion. This di¤ers from the models in our paper,
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in which this correlation is treated as a true underlying feature of the data process that is subject

to the LR identi�cation restriction.

Below we consider two observationally equivalent structural break models that give rise to the

common high-low-high pattern observed by Fernald (2007). We �rst present the results from a

co-break model in which the similar magnitude and timing of the breaks is driven by a common

underlying component. We then consider a model in which the commonality of the breaks is

coincidental (Fernald, 2007) or exogenously imposed (Francis and Ramey, 2009). Both models are

equally consistent with the observed data.

The co-break model has the following form 
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where D1t = 1 if t 2 [1; T=3] and 0 otherwise, D2t = 1 if t 2 [2T=3; T ] and 0 otherwise, (u1;t; u2;t)0 �
iidN(0;�) and � and 	(L) are the same as above. In the reported simulations, � = 0:95,  = �0:8,
� = 5 and T = 250: The pattern of the mean break in hours worked is calibrated to match the

U-shape of the actual series. Note that this model generates structural breaks in the mean of both

series since the mean break in hours worked is transmitted to labor productivity growth through

the low frequency correlation parameter � = �(1� �).
As in the main simulation experiment, we assess the �nite-sample behavior of IRF estimates

obtained from the level speci�cation, di¤erenced speci�cation, and levels speci�cation with HP

detrended productivity growth. The Monte Carlo results are presented in Figure 1. As before,

removing the low frequency component (either by di¤erencing of hours or HP-detrending of pro-

ductivity growth) leads to substantial deviations of the IRF estimates from their true values. This

is not surprising because these prior transformations of the data remove potentially important (now

co-breaking) information regarding the long-run properties of the data.

These results illustrate two important points. First, they indicate that the central insights

developed analytically in the model without breaks carry over to the case with breaks. Secondly,

they demonstrate that even if one accepts the evidence favoring a common high-low-high break

sequence in both series, this does not lead to a forgone conclusion in favor of Gali�s (1999) original

results. We can, however, obtain results supporting Fernald�s (2007) conclusions, if we impose his

additional assumption that the similarity of the breaks is coincidental in nature. Thus, we now

turn to an alternative break model that also generates structural breaks in both series but shuts

o¤ completely the feedback of ht�1 to 4lt through the low-frequency correlation coe¢ cient  (by
setting  = 0). In order to stay as close as possible to the observed features of the U.S. data, we

generate structural breaks in hours and labor productivity growth that happen at the same time.

Since these breaks are not generated by some underlying mechanism inside the model, we refer to

them as coincidental and possibly spurious. More speci�cally, the model has the following structure 
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where the values of the parameters and break dummies are the same as speci�ed above.

The results for the IRFs with data generated from model (2) are plotted in Figure 2. As

expected, removing the low frequency co-movement due to coincidental or exogenous structural

breaks that are not an inherent feature of the structural model produces IRF estimates that are very

close to the true IRFs. Similarly, the levels speci�cation, which mistakenly treats the coincidental

breaks as a true low frequency component to which the LR identi�cation restriction should apply,

produces biased IRF estimates. Nonetheless, the true IRF is still within the 95% con�dence bands.

Estimating and removing the breaks will not solve the dichotomy. If the breaks are coincidental

as in model (2) ; then removing the breaks prior to identi�cation will remove any low frequency

co-movement and the IRFs from both the VAR in levels and �rst di¤erences will be approximately

unbiased, regardless of the size of the largest root. If instead, the breaks are a true underlying

feature of the data process as in (1), then removing the breaks will remove potentially important

information regarding the long-run properties of the data and the resulting IRFs can be highly

inaccurate. In results available upon request, we con�rm this intuition, even when allowing a priori

knowledge of the break points. The results are similar to those shown in the third panel of Figures

1 and 2 employing the HP �lter.

As these simulations make clear, the mere existence of a common high-low-high speci�cation is

not su¢ cient to conclude in favor of either speci�cation. In order to provide results consistent with

Fernald (2007), we must impose his assumption that the timing of the breaks is coincidental. While

from a historical perspective, Fernald (2007) provides some convincing arguments for why this may

indeed be the case ex-post, we note that the ex-ante probability of such similar, yet completely

unrelated, break sequences is rather low. In the co-breaking model (1), to which our earlier insights

carried over, the similarity of the two breaks is to be expected, since there is a natural mechanism

relating the two breaks. Alternatively, the bivariate system might be regarded as misspeci�ed and

an improved inference procedure could result from estimating a larger model as in Erceg, Guerrieri

and Gust (2005).

1.2 RBC model

It is interesting to see if our main conclusions in the paper continue to hold if the data are simulated

from a dynamic general equilibrium model, in which the persistence and the low frequency co-

movements between the variables are implicitly determined. To investigate this, we follow Chari,

Kehoe and McGrattan (2008) and Christiano, Eichenbaum and Vigfusson (2006) by generating

data from a real business cycle model. The true impulse response functions implied from this

structural model are then compared to the estimated impulse responses from a �nite-order VAR

model. In particular, we use the two-shock CKM speci�cation described in Christiano, Eichenbaum

and Vigfusson (2006) as a data generating mechanism (see Christiano, Eichenbaum and Vigfusson,

2006, for details).

Several features of the RBC should be emphasized. First, the RBC model used for simulating
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the data imposes a unit root on technology while hours worked implied by the model are stationary

but highly persistent. As a result, any low frequency co-movements in the model should arise from

the persistence of the variables and not from structural breaks. Second, the RBC model implies

a VARMA (in�nite-order VAR) structure for (4lt; ht)0 and �tting a �nite-order VAR model to

(4lt; ht)0 results in biased estimates of the impulse response functions (Chari, Kehoe and McGrat-
tan, 2008; Christiano, Eichenbaum and Vigfusson, 2006; Ravenna, 2007). Although there exist

methods for correcting this misspeci�cation bias (for instance, Christiano, Eichenbaum and Vig-

fusson, 2006), we do not pursue this avenue, since our primary focus in this paper is on the bias

that arises in the di¤erenced speci�cation from omitting a possible low frequency co-movement,

regardless of whether or not there is an additional source of bias due to lag truncation.

We generate 1,000 samples of 180 observations each and consider both the levels and di¤erenced

VAR speci�cations with four lags. Figure 3 displays time plots of a typical pair of synthetic

sequences of demeaned hours and detrended labour productivity generated from the simulated

RBC model.1 The co-movement of the series is similar to that in the actual data which is plotted,

for visual comparison, in Figure 4. Likewise, Figure 5 displays HP trends of the simulated labor

productivity growth and hours worked from the RBC model. The �gure again shows a similar low

frequency co-movement to that of the real data (Figure 2 in the paper). Thus, the calibrated RBC

model appears to produce a low frequency co-movement, similar to the one found in the empirical

data. In conjunction with the lag truncation bias, this may help to explain why it produces the

large discrepancies in the IRFs of the di¤erenced and level speci�cations discussed below.

We now turn to the simulated IRFs. Again we consider structural VARs with hours in both

di¤erences and levels. Since hours worked is a highly persistent variable, it is tempting to subject

this variable to a unit root pre-test and depending on the outcome to model hours either in levels

or �rst di¤erences. Thus, we also report the results from this pre-testing procedure in which the

decision of modeling h in levels or �rst di¤erences is based on an ADF test with 4 lags at 5%

signi�cance level.

The results from the three speci�cations are presented in Figure 6. As reported elsewhere

(Christiano, Eichenbaum and Vigfusson, 2006, for example), the IRF estimates from the levels

VAR su¤er from an upward bias that is caused by approximating the true VARMA process by a

short-order VAR. Using an estimate of the long-run variance matrix as suggested by Christiano,

Eichenbaum and Vigfusson (2006) can substantially reduce this bias, although the sampling uncer-

tainty associated with the IRF estimates remains large.2 As in the previous simulation design, the

di¤erenced speci�cation reduces the sampling uncertainty but completely misses the true impulse

response due to the omission of important low frequency information. The true impulse response

1To avoid cherry-picking, we used the last of the 1,000 synthetic series from our simulation. Comparison to other

draws indicated that it was not atypical.
2Christiano, Eichenbaum and Vigfusson (2006) also �nd that this bias is substantially smaller after relaxing

the assumptions on the variance of the measurement error in the CKM speci�cation. In addition, they consider a

speci�cation with wage and price frictions for which the sampling uncertainty is much reduced.
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falls entirely outside the 90% Monte Carlo con�dence bands obtained from the di¤erenced spec-

i�cation. Due to the relatively high persistence of hours worked, the pre-testing procedure has

di¢ culties rejecting the unit root null and leads to only small improvements over the di¤erenced

speci�cation. The estimates are slightly less biased and the con�dence bands are wider re�ecting

the uncertainty regarding the presence of a unit root in hours worked.

In summary, the simulated data from the RBC model show low frequency co-movements sim-

ilar to those found in the empirical data and produce IRFs in which the levels and di¤erenced

speci�cations give widely divergent conclusions. Therefore, although the lag-truncation bias may

also play an important role when the data is generated from a dynamic general equilibrium model,

we nonetheless re-con�rm the central role of the low frequency co-movement in explaining the

discrepancy between the IRFs from level and di¤erence speci�cations.3
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Figure 1. Response of hours to a positive technology shock (long-run identi�cation) with data

simulated from the structural break model (1), where � = 0:95,  = �0:8, � = 5 and T = 250:

Solid line: true IRF; long dashes: median Monte Carlo IRF estimate; short dashes: 95% Monte

Carlo con�dence bands.
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Figure 2. Response of hours to a positive technology shock (long-run identi�cation) with data

simulated from the structural break model (2), where � = 0:95, � = 5 and T = 250. Solid line: true

IRF; long dashes: median Monte Carlo IRF estimate; short dashes: 95% Monte Carlo con�dence

bands.
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Figure 3. Detrended labour productivity and demeaned hours worked; simulated data from the

CKM speci�cation of the RBC model (Christiano, Eichenbaum and Vigfusson, 2006).
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Figure 4. Detrended labour productivity and demeaned hours worked, U.S. data 1948Q2 - 2005Q3.
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Figure 5. HP trends of labour productivity growth (top graph) and hours worked (bottom graph),

simulated data from the CKM speci�cation of the RBC model (Christiano, Eichenbaum and Vig-

fusson, 2006).
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Figure 6. Monte Carlo IRF estimates and 95% con�dence bands from the levels (top graph),

di¤erenced (middle graph) and pre-test (bottom graph) VAR speci�cations on simulated data (1,000

samples of length 180) from the CKM speci�cation of the RBC model (Christiano, Eichenbaum

and Vigfusson, 2006).
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