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Abstract

This paper clari�es the empirical source of the debate on the e¤ect of technology shocks on

hours worked. Providing theoretical support for previous contentions made in the literature,

we �nd that the contrasting conclusions from levels and di¤erenced VAR speci�cations can be

explained by a small low frequency co-movement between hours worked and labour productivity

growth, which is allowed for in the levels speci�cation but is implicitly set to zero in the di¤er-

enced VAR. This is due to a discontinuity in the solution for the structural coe¢ cients identi�ed

by long-run restrictions that exists only when this correlation is present. Consequently, even

when the root of hours is very close to one and the low frequency co-movement is quite small,

removing it can give rise to biases large enough to account for the empirical di¤erence between

the two speci�cations. While this low frequency correlation has recently been interpreted as

evidence against the levels speci�cation, we �nd that if it is a true property of the correctly

identi�ed model, then it can actually lead to substantial biases in the di¤erenced rather than

the levels speci�cation. Similar biases result from HP pre-�ltering of the data.
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1 Introduction

An ongoing debate exists regarding the empirical e¤ect of technology shocks on production inputs,

such as hours worked. Most standard real business cycle models start with the premise that business

cycles result from unexpected changes in production technologies. This has the implication that

hours worked and other inputs to production should rise following a positive technology shock. On

the other hand, models with frictions, such as sticky prices, often predict an initial fall in hours

worked following a productivity shock.1

As technology shocks are di¢ cult to measure,2 they are commonly speci�ed as structural shocks

in vector autoregressive (VAR) models which are identi�ed via the long-run (LR) restriction that

only technology shocks have a permanent e¤ect on labour productivity (Gali, 1999, for example).

This identi�cation scheme, an implication of many modern macroeconomic models, has been widely

employed in recent years. However, despite its common acceptance, the qualitative results have

proven quite sensitive to other aspects of the VAR speci�cation, particularly whether hours worked

are modeled in levels or �rst di¤erences.

Specifying the VAR in the di¤erence of both hours worked and labour productivity, Gali (1999)

and Shea (1999) �nd that hours worked initially fall following a positive technology shock, a �nding

which gives support to models with embedded frictions. Other papers have reached similar conclu-

sions (see, for example, Francis and Ramey, 2005; Basu, Fernald and Kimball, 2006; among others)

and this has spurred a line of research aimed at developing general equilibrium models (Gali and

Rabanal, 2004) or alternative �nite-horizon identi�cation schemes (Uhlig, 2004; Francis, Owyang

and Roush; 2005) that can account for this empirical �nding.

However, maintaining the long-run identi�cation restriction but allowing hours worked to en-

1However, Chang, Hornstein, and Sarte (2008) show that once inventories are allowed for, the dynamics in both

models become more complicated and it is no longer so simple to distinguish between �exible and sticky price models

based on the response of hours worked.
2Alexopoulos (2006) and Shea (1999) provide measurements of technological progress based on technology publi-

cations and patent data respectively.
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ter the model in levels, Christiano, Eichenbaum and Vigfusson (2003, 2006) provide support for

the prediction of standard RBC models, with hours worked rising immediately after a positive

productivity shock. Christiano, Eichenbaum and Vigfusson (2003) point out that the di¤erenced

speci�cation is misspeci�ed unless there is an exact unit root in hours and argue strongly in favor

of the levels speci�cation. They �nd by simulations that the levels speci�cation encompasses the

estimated impulse response function of the di¤erenced speci�cation, but not vice-versa.

More recently, Fernald (2007) argues against this interpretation. He reports evidence of two

level-shift breaks in both productivity growth and hours worked, occurring in the early 1970s and

mid-1990s. This results in a common high-low-high pattern, which Fernald (2007) refers to as

a low frequency correlation. He provides both intuition and simulation results in support of the

claim that the results from the levels speci�cation are mechanically driven by this common high-

low-high pattern. After removing sub-sample means, Fernald (2007) �nds that both the levels and

di¤erenced speci�cations produce similar impulse response functions, both qualitatively matching

the original results of Gali (1999). As we discuss further below, an important assumption made

in his framework is that the similar timing and direction of the breaks in labor productivity and

hours is treated as coincidental.

Francis and Ramey (2009) propose an alternative explanation for the low frequency correlation

which is based on demographics and employment shifts between private, government, and non-

pro�t sectors. In line with Fernald�s (2007) �ndings, they demonstrate that when this demographic

factors are removed, either by a simple Hodrick-Prescott (HP) �lter or by more sophisticated

demographic adjustments, then both the levels and di¤erenced speci�cations agree qualitatively

with those of Gali (1999). In their framework the correlation is real, as low frequency shifts in both

hours worked and productivity are caused by the same demographic and public employment trends.

However, they argue that these demographic trends should be removed since they have little do

with technology shocks. To lend support to this argument, they analyze a simple macroeconomic
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model with demographics in which the long-run identifying assumption are violated unless the

demographic in�uences are removed from the data.

Our paper takes up the challenge of reconciling the con�icting empirical �ndings reported

in the literature and contributes to the understanding of this debate in several respects. We

demonstrate analytically that the documented extreme sensitivity to di¤erent model speci�cations

appears to be due to a discontinuity in the solution for the structural coe¢ cients implied by the

long-run restriction. Even when the estimated reduced-form parameters are quite similar, the

implied structural parameter and therefore the implied impulse response functions, can be very

di¤erent when the largest autoregressive root of hours is one and when it is equal to, say, 0.99.

Interestingly, we �nd, both analytically and by simulations, that this discontinuity appears

to arise only in the presence of a low frequency correlation between hours worked and produc-

tivity growth. This draws a tight link between the apparently con�icting results of Christiano,

Eichenbaum and Vigfusson (2003), who argue that the di¤erenced SVAR is misspeci�ed, and Fer-

nald (2007) who argue that the levels speci�cation is misleading without accounting for structural

breaks. Although they point in opposite directions, both sets of results at least implicitly rely on

similar low frequency correlations.

The discontinuity that we uncover cautions against basing speci�cation choices in models iden-

ti�ed by long-run restrictions on univariate pre-tests of unit roots. It is well known that most

unit root tests tend to favor the di¤erenced speci�cation. This is well described by Francis and

Ramey (2009, p. 1072) who write that �if one were to rely on econometrics, which fail to reject the

presence of a unit root in per capita labor, one would be led to enter labor input in �rst di¤erences

... However, common sense tells us that per capita labor being a bounded series cannot have a

unit root.� In fact, due to the sharp discontinuity which occurs at unity, we argue that the unit

root pre-testing is unlikely to provide any indication of which speci�cation is preferred and that

over-di¤erencing can lead to equally biased results in a local-to-unity speci�cation, against which
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unit root tests have no consistent power.

Our �ndings also help to clarify why the literature reports a preponderance of evidence in favor

of the original Gali (1999) result, when applying other methods of �ltering, such as the Hodrick-

Prescott �lter or break removal to either series. Just as in the case of di¤erencing, these �lters can

be seen to remove the low frequency correlation. Thus, these alternative �ltering strategies con�rm

the conclusions of the di¤erenced speci�cation because they share the same primary function as

di¤erencing. Our results indicate that in the absence of a low frequency correlation, the long-

run restriction is unchanged by di¤erencing. This further explains why the level and di¤erenced

speci�cation provide similar results after the low frequency components have been removed by

either trend break removal or HP �ltering.

More generally, we argue that the di¤erence in conclusions cannot be determined solely on the

basis of empirical methods, such as unit-root pre-tests or HP pre-�ltering. Instead, the appro-

priate conclusions that one draws from any of these approaches rests critically on the economic

assumptions made about the source of the low frequency correlation. If the long-run identifying

assumption holds true and thus these low frequency correlations are treated as a true feature of the

data generating process, as is implicitly the case in Christiano, Eichenbaum and Vigfusson (2003),

then over-di¤erencing improperly removes this low frequency correlation, thereby corrupting the

long-run identi�cation of the di¤erence speci�cation. Such true low frequency co-movement may

be plausible if technological changes have long-lasting e¤ects on the underlying structure of the

labour market. For example, technological improvements give rise to greater e¢ ciency in house-

hold production, leading to increased female labour market participation. Likewise, technological

innovations a¤ecting regional transportation or labour search costs, may also have lasting impacts

on labour markets. On the other hand, Fernald (2007) provides some convincing arguments for

why the similar timing of the structural breaks in productivity and hours may be coincidental,

arising from disparate causes. Although Francis and Ramey (2009) instead demonstrate that this
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low frequency behavior may be driven by common demographic and sectoral employment changes,

they argue that it violates the long-run identifying assumption and should thus be treated as low

frequency noise. In either case, it is the presence of this low frequency correlation that corrupts

the long-run identi�cation and renders the unmodi�ed levels speci�cation misleading.

The popularity of the long-run identi�cation scheme derives in large part from its robustness

to model speci�cation, in the sense that it often remains valid under a wide variety of macro-

economic models. However, the implementation of the long-run restriction also relies on the low

frequency properties of the data. Our results, which illustrate the possibility of discontinuity in

this dependence, reinforce the conclusions from the empirical literature suggesting that the long-

run identifying scheme can be far less robust to assumptions on the low frequency properties of

the variables. Of course, there may still be many cases in which robust empirical results can be

obtained; for example, if the variables in question are obviously stationary or if low frequency cor-

relations are not present. Nevertheless, we echo the recommendation made by Fernald (2007) that

empirical researchers should check carefully the robustness of their results to alternate assumptions

on the low frequency properties of the data.3

The rest of the paper is organized as follows. Section 2 brie�y reviews some empirical evidence

and provides the intuition behind our �ndings. In Section 3, we formalize this intuition and present

a theoretical model that helps us to identify the possible source of low frequency correlations and

derive the implications for the impulse responses identi�ed with long run restrictions. Section

4 presents the results from a Monte Carlo simulation experiment. Section 5 discusses the main

implications of our analysis for empirical work and Section 6 concludes.

3This issue is distinct from the critique of Erceg, Guerrieri and Gust (2005) and Chari, Kehoe and McGrattan

(2008), who argue that �nite structural VARs poorly approximate the in�nite order models that are implied by

economic theory. Christiano, Eichenbaum and Vigfusson (2006) show that the resulting lag-truncation biases can be

serious in theory but they tend to be less serious under realistic parameterizations.
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2 Illustrative Example and Intuitive Arguments

To put the subsequent discussion in the proper empirical context, we present in Figure 1 the es-

timated impulse response functions (IRFs) based on the levels and di¤erenced speci�cations with

quarterly U.S. data for the period 1948Q2 - 2005Q3.4 The di¤erence in the impulse response func-

tions is quite striking. Despite the voluminous recent literature on the e¤ects of technology shock

on hours worked, there is still little understanding of how such large quantitative and qualitative

di¤erences in the impulse responses can be generated. While the literature attributed these dis-

crepancies to potential biases in both VAR speci�cations, it is not clear that such biases are large

enough in practice to explain such highly divergent results especially in the short run. In fact, we

�nd that it is nearly impossible to justify these di¤erences solely by the behavior of hours worked

itself and, in particular, by small deviations of the largest root of hours worked from unity.

It is well known, for example, that over-di¤erencing, and misspeci�cation in general, can lead

to biased results. However, what is indeed surprising is that a seemingly very minor, even unde-

tectable, misspeci�cation in the di¤erence speci�cation, may lead to such a substantial bias in the

resulting impulse response function. Standard unit root and stationarity tests on hours worked,

neither of which reject their respective null hypothesis, provide little guidance regarding this speci�-

cation choice (Christiano, Eichenbaum and Vigfusson, 2006).5 Pesavento and Rossi (2005) provide

con�dence intervals on the largest autoregressive root in hours worked using inversions of four dif-

ferent unit root tests. All four con�dence intervals include unity and in two cases, the lower bound

on largest on largest root exceeds 0.980 (in the other two cases, it exceeds 0.925). On the face

of it, this hardly appears to be a case in which over-di¤erencing would lead to large misspeci�ca-

tion errors. In fact, in a reduced-form near unit root model, the speci�cation error committed by

over-di¤erencing is second order. Nevertheless, Christiano, Eichenbaum and Vigfusson (2003) �nd

4U.S. data on labour productivity, hours worked in the non-farm business sector and population over the age of

16 from DRI Basic Economics (the mnemonics are LBOUT, LBMN and P16, respectively).
5Using a multivariate Bayesian posterior odds procedure, Christiano, Eichenbaum and Vigfusson (2003) �nd

evidence in favor of the levels speci�cation.
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quite a large speci�cation error in their calibrated simulations. This provocative result has yet to

be satisfactorily explained in an econometric sense.

Another way to look at the problem is to note that the di¤erenced speci�cation ignores possible

low frequency co-movements between labour productivity growth and hours worked. Figure 2

reveals that the Hodrick-Prescott trend6 of labour productivity growth and hours worked exhibit

some similarities and suggest that labour productivity growth may inherit its small low frequency

trend component from hours worked. On a more intuitive level, if hours worked are a highly

persistent, but stationary, process, it is possible that labour productivity growth inherits some

small low frequency component from hours without inducing any observable changes in its time

series properties.

In fact, as we show later, the seemingly con�icting evidence from the levels and di¤erenced

speci�cations identi�ed with LR restrictions can only be reconciled when these deviations from the

exact unit root are accompanied by small low frequency co-movements between labour productivity

growth and hours worked. We show that this low frequency co-movement drives a wedge between

the levels and di¤erenced speci�cations with a profound impact on their impulse response functions.

This situation arises when restrictions on the matrix of LR multipliers, which includes low fre-

quency information, are used to identify technology shocks. While the levels speci�cation explicitly

estimates and incorporates this low frequency co-movement in the computation of the impulse re-

sponse functions, the di¤erenced speci�cation restricts this element to be zero. It is important to

emphasize that this component could be arbitrarily small and could accompany an autoregressive

(AR) root arbitrarily close to one, yet still produce substantial di¤erences in the impulse responses

from the two speci�cations. Therefore, our results also suggest that a pre-testing procedure for a

unit root will be ine¤ective in selecting a model that approximates well the true IRF when hours

worked are close to a unit root process. In this case, the pre-testing procedure would favor the

di¤erenced speci�cation, which rules out the above mentioned low frequency correlation, with high

6Throughout the paper, the value of the smoothing parameter for the HP �lter is set to 1,600.
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probability. This could in turn result in highly misleading IRF estimates. In the next section, we

provide more formal arguments for explaining and reconciling the con�icting empirical evidence

from the levels and di¤erenced speci�cations.

3 Analytical Framework for Understanding the Debate

Our analytical framework and econometric speci�cation is designed to mimic some of the salient

features of the data and the implications of the theoretical macroeconomic (in particular, RBC)

models. First, we specify labour productivity as an exact unit root process. The RBC model

imposes a unit root on technology and the data provide strong empirical support for this assumption.

Hours worked exhibit a highly persistent, near-unit root behavior, although the standard RBC

model implies that they are a stationary process. Since an exact unit root cannot be ruled out

as an empirical possibility, we do not take a stand on this issue and consider both the stationary

and unit root cases. However, these di¤erent speci�cations (stationary or nonstationary) either

allow for or restrict the low frequency co-movement between hours worked and labour productivity

growth. It turns out that this has crucial implications for the impulse response functions.

If hours worked are assumed stationary, the matrix of largest roots of the labour productivity

growth and hours worked can contain a non-zero upper o¤-diagonal element, whose magnitude de-

pends on the closeness of the root of hours worked to one. This, typically fairly small, o¤-diagonal

element can produce substantial di¤erences in the shapes and the impact values of the impulse

response functions from models that incorporate (levels speci�cation) and ignore (di¤erenced spec-

i�cation) this component.

Alternatively, in the case of an exact unit root for hours worked, the matrix of largest roots

specializes to the identity matrix. In this case, there can be no low frequency co-movement between

hours work and labour productivity growth, ruling this out as an explanation for the di¤erence

between the two sets of impulse response functions. It is important to note, however, that this
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explanation is ruled out only in the case of an exact unit root. Our results suggest that this small

low frequency co-movement can continue to induce large discrepancies between the IRFs of the

di¤erenced and levels VARs, even when the largest root is arbitrarily close to and indistinguishable

from unity.7

In order to complete the model, we need to adopt an identi�cation scheme that allows us

to recover the structural parameters and shocks. We follow the literature and impose the long-

run identifying restriction that only shocks to technology can have a permanent e¤ect on labour

productivity. In addition, we assume that the structural shocks are orthogonal. In the next

subsections, we formalize this analytical framework and work out its implications for the impulse

response functions based on levels and di¤erenced speci�cations.

3.1 Reduced-form model

Consider the reduced form of a bivariate vector autoregressive process eyt = (lt; ht)0 of order p+ 1
	(L)(I � �L)eyt = ut; (1)

where	(L) = I�
Pp
i=1	iL

i =

"
 11(L)  12(L)

 21(L)  22(L)

#
; E(utjut�1; ut�2; :::) = 0, E(utu0tjut�1; ut�2; :::) =

� and the matrix � is expressed in terms of its eigenvalue decomposition as � = V �1�V , where

� =

"
1 0

0 �

#
contains the largest roots of the system and V =

"
1 �
0 1

#
is a matrix of cor-

responding eigenvectors (see, for example, Pesavento and Rossi, 2006). Simple algebra yields

� =

"
1 �

0 �

#
, where � = � (1� �), is the parameter that determines the low frequency co-

movement between the variables and � denotes the largest root of hours worked. This parameteri-

zation, which arises directly from the eigenvalue decomposition of �, allows for a small (�) impact

of ht on lt, provided that � is not exactly equal to one. Note that in the exact unit root case, �

collapses to the identity matrix. The other o¤ diagonal element ofV; and therefore of �, is set to

7This argument can also be formalized in the local-unity setting that we consider in Section 3.4. In this setting,

the o¤-diagonal element must itself be vanishing (i.e. local-to-zero), but nonetheless has a critical impact on the

impulse response functions.
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zero as it would otherwise imply that hours is I (2) when � = 1 and I (1) when � < 1:8

It is convenient to rewrite model (1) in Blanchard and Quah�s (1989) framework by imposing the

exact unit root on productivity so that 4lt is a stationary process. In this case, let yt = (4lt; ht)0

and A(L) = 	(L)

"
1  (1� �)L
0 1� �L

#
:9 Then, the reduced form VAR model is given by

A(L)yt = ut (2)

yt = A1yt�1 + :::+Ap+1yt�p�1 + ut:

The non-zero o¤-diagonal element  (1� �)L allows for the possibility that a small low frequency

component of hours worked a¤ects labour productivity growth. When the low frequency component

is removed from either hours worked (Francis and Ramey, 2009, and Gali and Rabanal, 2004) or

labour productivity growth (Fernald, 2007), this coe¢ cient is driven to zero and the estimated IRF

resembles the IRF computed from the di¤erenced speci�cation. The above parameterization of �

can be used to explain this result.

3.2 Structural VAR

We denote the structural shocks (technology and non-technology shocks, respectively), by "t =

("zt ; "
d
t )
0, which are assumed to be orthogonal with variances �21 and �

2
2, respectively, and relate

them to the reduced form shocks by "t = B0ut, where B0 =

"
1 �b(0)12

�b(0)21 1

#
. Pre-multiplying

both sides of (2) by the matrix B0 yields the structural VAR model

B(L)yt = "t;

8 In principle, the model can also be generalized to include a non-zero (but asymptotically vanishing) feedback

from the level of productivity to hours worked. Simple algebra (available from the authors upon request) shows that

this parameterization does not a¤ect the subsequent analysis of the impulse response of hours worked to technology

shocks under the long-run restriction that non-technology shocks have no permanent e¤ect on productivity. For this

reason, we set the lower o¤ diagonal element of � to zero without any loss of generality.
9 It is important to note, however, that the zero lower o¤ diagonal restriction on matrix � does not rule out a

feedback from productivity growth to hours worked in higher-order (p > 0) VAR models. Thus, it has no implication

for the direction of causality implied by the low frequency correlation between hours worked and productivity growth.

For example, in a VAR(2) model, the lagged productivity growth is allowed to a¤ect hours worked through the

possibly non-zero coe¢ cient  21:
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where B(L) = B0A(L).

The matrix of long-run multipliers in the SVAR for yt is

B(I) =

24  11(1)� b
(0)
12  21(1) (1� �)

�
[ 11(1) +  12(1)]� b

(0)
12 [ 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) (1� �)

�
[ 21(1) +  22(1)]� b

(0)
21 [ 11(1) +  12(1)]

� 35 :
Imposing the restriction that non-technology shocks have no permanent e¤ect on labour produc-

tivity renders the matrix B(I) lower triangular.10 For � < 1, this LR restriction translates into the

restriction b(0)12 = [ 11(1) +  12(1)]=[ 21(1) +  22(1)]:

Suppose now that one assumes � = 1 and let 4eyt = (4lt;4ht)0: Then, the reduced form

specializes to

	(L)4 eyt = ut (3)

and the structural form is given by

B0	(L)4 eyt = "t

with a long-run multiplier matrix

B(I) =

"
 11(1)� b

(0)
12  21(1)  12(1)� b

(0)
12  22(1)

 21(1)� b
(0)
21  11(1)  22(1)� b

(0)
21  12(1)

#
:

Note that the LR restriction implies that b(0)12 =  12(1)= 22(1) and even if the upper right element

of � is non-zero, the di¤erenced VAR would ignore any information contained in the levels and

implicitly set this element equal to zero.

Once the structural parameter b(0)12 is obtained (by plugging consistent estimates of the ele-

ments of 	(I) from the reduced form estimation), the remaining parameters can be recovered from

B0E(utu
0
t)B

0
0 = E("t"

0
t) or

b
(0)
21 =

b
(0)
12 �22 � �12
b
(0)
12 �12 � �11

;

�21 = �11 � 2b
(0)
12 �12 +

h
b
(0)
12

i2
�22

10An alternative formulation of the restriction is that C(I) is lower triangular, where C(L) = B(L)�1 describes the

moving average representation yt = C(L)"t. Simple matrix algebra shows that the two restrictions are equivalent.
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and

�22 = �22 � 2b
(0)
21 �12 +

h
b
(0)
21

i2
�11;

where �ij is the [ij]th element of �. These parameters can be used consequently for impulse

response analysis and variance decomposition.

3.3 Implications for impulse response analysis

The impulse response functions of hours worked to a shock in technology can be computed either

from the levels speci�cation (Blanchard and Quah, 1989; Christiano, Eichenbaum and Vigfusson,

2006; among others) or the di¤erenced speci�cation (Gali, 1999; Francis and Ramey, 2005). The

levels approach will explicitly take into account and estimate a possible non-zero upper o¤-diagonal

element in � but it su¤ers from some statistical problems when hours worked are highly persistent.

Christiano, Eichenbaum and Vigfusson (2003) note that the levels speci�cation tends to produce

IRFs with large sampling variability that are nearly uninformative for distinguishing between com-

peting economic theories. Gospodinov (2010) shows that this large sampling uncertainty arises

from a weak instrument problem when the largest root of hours worked is near the nonstationary

boundary. On the other hand, the di¤erenced approach will produce valid and asymptotically

well-behaved IRF estimates in the exact unit root case but it ignores any possible low frequency

co-movement between hours and labour productivity growth when hours worked is stationary. It

can therefore give rise to highly misleading IRFs even for very small deviations from the unit root

assumption on hours.

Since b(0)12 = [ 11(1) +  12(1)]=[ 21(1) +  22(1)] and b
(0)
12 =  12(1)= 22(1) can produce very

di¤erent values of b(0)12 ; the IRFs from these two approaches can be vastly di¤erent. In fact, because

the value of  does not depend on �, these di¤erences can remain large even for (�� 1) arbitrarily

close, but not equal, to zero. For simplicity, take the �rst-order model where 	(L) = I. In this case,

the two restrictions set the value of b(0)12 to  and 0, respectively, implying two very di¤erent values

for b(0)21 , which, in turn, directly determines the impulse response function, since in the �rst-order
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model

�
(l)
hz =

@ht+l
@"zt

=
h
�lB�10

i
21
=

b
(0)
21 �

l

1� b(0)12 b
(0)
21

: (4)

As it is clear from (4) ; the impact e¤ect at l = 0 does not depend on the value of � as �0 = 1, but

only on the values of b(0)21 and b
(0)
12 , which themselves depend on 	(1) and . Focusing the debate on

the distance of � from one is therefore misleading, provided that � is not precisely equal to one.

To visualize the di¤erences in the IRFs from the levels and di¤erenced speci�cations when � is

not diagonal, it is instructive to consider the following simpli�ed example. Suppose that the true

data generating process is a �rst-order VAR with � = 0:98;  = �1 (which implies an o¤-diagonal

element � = �(1 � �) = 0:02) and � =

 
1 �0:2

�0:2 0:8

!
: From the above formulas, it can be

easily inferred that the true values of the parameters that enter the IRF are b(0)12 = 1; b
(0)
21 = 0:75

and �21 = 1:4, whereas the di¤erenced approach uses values of b(0)12 = 0; b
(0)
21 = �0:2 and �21 = 1.

The IRFs based on the levels (true) and di¤erenced speci�cations are plotted in Figure 3.

Figure 3 clearly illustrates the large di¤erences in the IRFs from the two speci�cations that

are generated by the presence of a small o¤-diagonal element �. Interestingly, the di¤erences

between the IRFs do not necessarily disappear as � gets closer to one and � approaches zero.

As our analytical framework suggests, they can remain substantial even for values of � � 1 and

� = �(1 � �) arbitrarily close, but not equal, to zero. This is because, provided that � < 1,

the size of this discrepancy depends on the co-movement through the parameter , rather than

through either � or �. At a more intuitive level, the reason that the short-horizon IRFs can be

highly sensitive to even small low frequency co-movements accompanying small deviations of � from

one, is that they are identi�ed o¤ of long-run identi�cation restrictions, which depend entirely on

the zero frequency properties of the data. As reported below, a similar sensitivity does not arise

when short-run identi�cation restrictions are employed.
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3.4 An alternative parameterization

The fact that our framework suggests potentially large IRF discrepancies even for values of � quite

close to one is practically relevant, precisely because this is the case in which unit root tests have

the greatest di¢ culty detecting stationarity. The low power of the unit root test in this case arises

because, in small samples, the resulting process for hours may behave more like a unit root process

than like a stationary series. This concept has been formalized in the econometrics literature by the

near unit root or local-to-unity model, in which � = 1� c=T for c � 0 is modelled as a function of

the sample size T and shrinks towards unity as T increases (Phillips, 1987; Chan, 1988). Naturally,

this dependence on the sample size should not be interpreted as a literal description of the data,

but rather as a device to approximate the behavior of highly persistent processes in small samples.

What makes this modelling device particularly relevant, is that, for small values of the local-to-

unity parameter c, it describes a class of alternatives to � = 1 against which unit root tests have

no consistent power. Intuitively, c = T (1� �) can be viewed as measuring the distance of the root

from one relative to the sample size. Small values of c correspond to cases in which T is relatively

small and � is relatively close to one, so that unit root tests have low power and the di¤erence

speci�cation is likely to be employed when computing IRFs.

An alternative parameterization of the model in (1) is therefore obtained by modeling the

largest root in hours as a local-to-unity process with � = 1 � c=T with c � 0. Then, it follows

that � =

"
1 0

0 1� c=T

#
, V =

"
1 �
0 1

#
and �T =

"
1 �c=T
0 1� c=T

#
. In �nite samples, as long

as c > 0, no matter how small, the co-movement between hours and productivity is di¤erent than

zero, although arbitrary small. The reduced form for yt = (4lt; ht)0 is now

A(L)yt = ut

with A(L) = 	(L)

"
1  (c=T )L

0 (1� L) + (c=T )L

#
: In the unit root case (c = 0), �T collapses to the

identity matrix, the variables are not cointegrated and there is no feedback from hours to pro-
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ductivity growth. Thus, the impact of ht�1 on 4lt is local-to-zero and vanishing at rate T�1=2; 11

capturing the notion that the low frequency co-movement between hours and productivity growth

must be small if the root of hours is close to unity. Writing the model in the local-to-unity form

is also intuitively appealing since the low frequency correlation between ht�1 and 4lt is bound to

disappear asymptotically, so that hours do not a¤ect productivity growth in the long run.

Under the local-to-unity parameterization, the matrix of long-run multipliers becomes

B(I) =

24  11(1)� b
(0)
12  21(1) c=T

�
[ 11(1) +  12(1)]� b

(0)
12 [ 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) c=T

�
[ 21(1) +  22(1)]� b

(0)
21 [ 11(1) +  12(1)]

� 35
and the restriction that non-technology shocks have no permanent e¤ect on labour productivity

yields b(0)12 = [ 11(1) +  12(1)]=[ 21(1) +  22(1)] for c > 0. Note, that when c = 0, the model

again specializes to the di¤erenced VAR speci�cation in (3), for which the LR speci�cation implies

b
(0)
12 =  12(1)= 22(1). As a result, the analysis of the shapes of the impulse response functions

under the di¤erent speci�cations in Section 3.3 remains unchanged. This con�rms the �nding that

substantial di¤erences in IRFs can arise even within this class of models for which unit root tests

are not powerful enough to detect that hours worked is stationary. Thus, the stylized fact that

hours worked is indistinguishable from a unit root process does not guarantee that the true IRF

will be close to the IRF from the di¤erenced speci�cation.

4 Monte Carlo Experiment

To demonstrate the di¤erences in the IRF estimators with a non-diagonal �; we conduct a Monte

Carlo simulation experiment. 10,000 samples for yt = (lt; ht)0 are generated from the VAR(2) model"
I �

 
�0:05 �0:08
0:2 0:55

!
L

#"
I �

 
1 �

0 �

!
L

# 
lt

ht

!
=

 
u1;t

u2;t

!
;

where � = �(1� �); T = 250, (u1;t; u2;t)0 � iidN(0;�); � =

 
0:78 0

0 0:55

!
, and the parameter

values are calibrated to match the empirical shape of the IRF of hours worked to a technology
11The level of h a¤ects 4lt through the term (c=T )ht�1 which is Op(T�1=2) since T�1=2ht�1 = Op(1) in the

local-to-unity setup.
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shock.12 The lag order of the VAR is assumed known. In addition to the IRF estimates from the

levels and di¤erenced speci�cations, we consider the IRF estimates from a levels speci�cation with

HP detrended productivity growth, as in Fernald (2007).

Figures 4 to 7 show simulation results for the IRFs under four di¤erent parameter con�gurations

for � and , all of which lie in a range of values that is potentially consistent with the actual

data. The three panels of each �gure correspond to the di¤erent model speci�cations: a VAR in

productivity growth and hours, a VAR in productivity growth and di¤erenced hours and a VAR in

HP detrended productivity growth and hours. For each model we show the true IRF (solid line),

the median Monte Carlo IRF estimate (long dashes), and the 95% Monte Carlo con�dence bands

(short dashes).

In Figure 4 we consider a stationary but persistent process for hours (� = 0:95), while allowing

a small low frequency component of hours worked to enter labour productivity growth (� = 0:04).

As shown in the �gure, the VAR in levels (left graph) estimates an IRF that is close, on average,

to the true IRF, except for a small bias (see Gospodinov, 2010, for an explanation). On the other

hand, the VAR with hours in �rst di¤erences (middle graph) incorrectly estimates a negative initial

impact of the technology shock even though the true impact is positive. These results are in

agreement with our discussion in the analytical section.

In Figure 5, we increase the largest root of hours worked from � = 0:95 to � = 0:97 and also

substantially decrease value of the o¤-diagonal element from � = 0:04 to � = 0:015. This brings the

matrix of largest roots closer to an identity matrix for which the di¤erenced speci�cation is correct.

Despite these changes, the IRFs shown in Figures 4 and 5 are strikingly similar. This underlines the

ability of even a very small low frequency co-movement to drive a qualitatively important wedge

between the IRFs based on the levels and di¤erenced models. Likewise, it illustrates that the largest

root need not be far from one for this e¤ect to be important.

12Note that while the numbers for the short-run dynamics are chosen to match the empirical values estimated from

a VAR in levels, in our simulations we also impose � = 1 and therefore allow both speci�cations (levels and �rst

di¤erences) to be the true DGP.
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The lower panels of Figures 4 and 5 are also interesting. When the HP �lter is used to remove

the low frequency component from labour productivity growth (Fernald, 2007), the estimated IRF

resembles the IRF computed from the di¤erenced speci�cation. The graphs clearly demonstrate

that the removal of the low frequency component, by either di¤erencing or HP �ltering, eliminates

the possibility of any low frequency co-movements between the transformed series and this has a

profound in�uence on the IRFs.13

Figure 6 presents the results for the exact unit root case. In this case the matrix of largest roots

becomes diagonal, eliminating the low frequency co-movement between hours and productivity

growth (� = 0). Despite some small biases, all median IRF estimates now correctly sign the

impact of the technology shock and come close to tracing out the true IRFs. Not surprisingly,

the di¤erenced speci�cation is particularly accurate and produces an unbiased estimator with tight

con�dence intervals. The estimator from the levels speci�cation exhibits both a modest bias that

arises from the biased estimation of the largest root of hours and a very large sample uncertainty

(Gospodinov, 2010). The estimator from the speci�cation with HP �ltered labour productivity

growth performs similarly to the di¤erenced estimator, although it is slightly biased and more

dispersed.

In Figure 7, we maintain the assumption of a zero o¤-diagonal element (� = 0) and return to

a persistent but stationary speci�cation for hours worked (� = 0:95). The median IRFs from all

models are again quite similar, both to each other and to the true IRF. In this sense, beside having

smaller bias and variance, the basic message from Figures 6 and 7 is similar, despite the fact that

hours are nonstationary in Figure 6 but stationary in Figure 7.

13After removing the low frequency component, the nature of the IRF changes and it is not completely justi�able

to compare the IRFs from the transformed and the original processes. Nevertheless, we still report the IRFs on the

same graph to illustrate the economically large di¤erences created by a fairly small o¤-diagonal element. We also

considered the speci�cation when hours worked are HP-�ltered as in Francis and Ramey (2009). The behavior of the

IRF estimates in this model is similar to the case of HP-�ltered productivity growth. Here, we make no argument

as to whether the low frequency components should or should not be removed prior to the IRF analysis. Instead, we

provide an analytical framework for explaining and reconciling the con�icting results documented in the empirical

literature. We further discuss the implications of low frequency �ltering in the next section.

17



In summarizing the results from these four �gures, we note that large qualitative di¤erences in

median IRFs for the di¤erenced and levels VARs were observed only in Figures 4 and 5, in which

there is a small low frequency relationship between hours and labour productivity (� 6= 0). Neither

Figure 6 nor Figure 7 show qualitative di¤erences in the median IRFs from the levels and di¤erenced

speci�cations. Yet, in Figure 6, hours have a unit root, whereas they are stationary in Figure 7.

While small sample bias is present and a¤ects the precision of the estimation, our simulations

show that, unlike Ergec, Guerrieri and Gust (2005), the small sample bias and persistence of the

non-technology shocks alone are not enough to generate the substantial di¤erences in the impulse

responses that we �nd in practice. What Figures 6 and 7 share in common is the absence of the low

frequency co-movement of Figures 4 and 5 (i.e. � = 0). Although the size of the unit root in hours

worked has important implications for the sampling distributions of the IRFs, these results suggest

that it is the low frequency co-movement that plays the critical role in driving the qualitative

di¤erences between the level and di¤erenced speci�cations.

To better assess the sensitivity of the levels and di¤erenced speci�cations to di¤erent values of �

and �, we plot in Figures 8 and 9 the true and estimated responses for various degrees of persistence

and low frequency co-movement: Each line represents values for  = f�0:5;�0:2; 0; 0:2; 0:5g, which

correspond to di¤erent o¤-diagonal elements � depending on the value of � (recall that � = �(1�

�)). Once again, it is clear that, while the level speci�cation explicitly estimates and incorporates

the di¤erent values for � in the computation of the impulse response functions, the di¤erenced

speci�cation implicitly imposes this element to be zero. This leads to substantial deviations from

the true impulse response functions.

We also want to stress that the con�dence intervals reported in Figures 4-7 are Monte Carlo

con�dence intervals, which are infeasible since they utilize knowledge of the true data generating

process. The bias in the levels VAR and the misspeci�cation in the �rst di¤erence regressions result

in poor coverage of con�dence intervals constructed with standard procedures at medium and long
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horizons (Pesavento and Rossi, 2006). This is not re�ected in our infeasible con�dence intervals.

At the same time, Figures 4-6 show clearly how a wide range of di¤erent estimates for the IRF are

possible, and that the sampling uncertainty in the levels VAR is indeed larger. At the same time,

except for the cases in which either � is exactly one or � is exactly zero, the true impulse response

is never contained in the Monte Carlo con�dence bands for the VAR in �rst di¤erences.

Finally, the di¤erences in the IRFs for the various model speci�cations are expected to arise

only in the case of long-run identi�cation restrictions that are directly a¤ected by the inclusion

or the omission of the low frequency component. In order to verify this conjecture, we estimate

the IRFs based on a short-run identi�cation (Cholesky decomposition) scheme, with productivity

growth ordered �rst and hours second. While we recognize that imposing short-run restrictions

may be rather ad hoc and may lack a solid theoretical justi�cation, Christiano, Eichenbaum and

Vigfusson (2006) demonstrate that the short-run identi�cation scheme produces estimates with

appealing statistical properties.14 The results from the three models for � = 0:97 and � = 0:015

are presented in Figure 10. Unlike the long-run identi�cation scheme (Figure 5), the IRF estimates

for all speci�cations are very close to the true IRF and fall inside the 95% Monte Carlo con�dence

bands. This suggests that the short-run identi�cation scheme is robust to the presence or absence

of low frequency co-movements, which is not the case with identifying restrictions that are based

on long-run information.15

14Our short-run identifying scheme is used only to illustrate the relative insensitivity of the IRFs to the low frequency

co-movement when they are identi�ed by short-run restrictions. We do not advocate its use in practice since it has

no clear theoretical justi�cation. See Christiano, Eichenbaum and Vigfusson (2006) for a more sophisticated, model-

based, short-run identi�cation scheme.
15The main conclusions from this simulation experiment continue to hold if the data are generated from a dynamic

general equilibrium model in which the persistence and the low frequency co-movements between the variables are

implicitly determined. Simulation results with data from the two-shock CKM speci�cation in Christiano, Eichenbaum

and Vigfusson (2006) are available from the authors upon request. These results con�rm the poor properties of the

impulse responses from the di¤erenced speci�cation and reveal that a pre-testing procedure (ADF test) has di¢ culties

rejecting the unit root null of hours and leads to only small improvements over the di¤erenced speci�cation.
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5 Discussion of Results

The analytical and numerical results presented above clearly suggest that some seemingly innocuous

transformations of the data can lead to vastly (qualitatively and quantitatively) di¤erent policy

recommendations. The main objective of this paper is to illustrate and identify the source of

these di¤erences. At the same time, several interesting observations and remarks emerge from our

analysis that highlight some potential pitfalls in empirical work with structural dynamic models

that use highly persistent variables in conjunction with long-run identifying restrictions.

First, it is common practice in macroeconomics to remove low frequency components by applying

the HP �lter when focusing on business cycle frequencies. For example, Fernald (2007) argues that

the low frequency component is not important for business cycle analysis. The e¤ect of technology

shocks on hours worked is typically evaluated at business cycle frequency and it is reasonable to

assume that the removal of low frequency components will not a¤ect the conclusions. We agree

with this position, provided that the structural shocks are identi�ed using short- or medium-run

restrictions. We argue that the low frequency component contains important long-run information

that, while not directly relevant at business cycle frequencies, a¤ects in a fundamental way the

long-run restrictions. Therefore, omitting or explicitly removing the low frequency correlation can

result in misspeci�cation of the long-run restriction and hence the business cycle component that

is of primary interest to the analysis. In contrast, the low frequency component does not seem to

matter for the short-run restrictions and the transformations applied to the data do not a¤ect the

impulse responses that they identify, as illustrated in our simulation section.

Although the analogy is not exact, the removal of low frequency components bears some simi-

larities to ignoring the long-run information contained in the error-correction term in cointegrated

models. The cointegration information does not directly a¤ect the business cycle analysis but is

essential to the long-run equilibrium. If we use short-run restrictions, the cointegration information

can be left out without serious consequences. If the data are subjected to di¤erencing (�ltering)
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prior to the analysis, the long-run information contained in the cointegrating relationship will be

lost and the long-run restriction will be misspeci�ed, which in turn will give rise to misleading

results.

Second, it is well known that a highly persistent linear process often exhibits dynamics that are

observationally equivalent to dynamics generated by a long memory, structural break or regime-

switching process. Therefore, it is di¢ cult to statistically distinguish between these processes in

�nite samples and commit to a particular speci�cation. In our context, it is hard to determine

if the low frequency component (for example, the U shape in hours worked) and co-movement

are spurious or not. Fernald (2007) convincingly illustrates the cost of falsely keeping the low

frequency component if this co-movement is spurious. Our results indicate that there is an equally

large cost of falsely removing it when the co-movement is a true feature of the correctly identi�ed

model. Ultimately, the researcher has to take a stand on whether the long-restriction applies to the

original or �ltered data. Our analysis in the previous sections provides important information on

the sensitivity (robustness) of the di¤erent statistical transformations of the data to misspeci�cation

of the long-run restriction.

Finally, pre-testing procedures that are used to determine which speci�cation is more appropri-

ate perform poorly, especially when the data are highly persistent. Our analysis suggest that large

di¤erences in the IRFs arise even when the largest root is arbitrarily close to one, in which case

the pre-testing procedure selects the di¤erenced speci�cation with probability approaching one.

Put another way, we �nd that, when identi�ed by LR restrictions, the IRFs from the di¤erenced

speci�cation are not robust to small deviations of the largest root from unity, even when those

deviations are too small to be empirically detected.
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6 Conclusion

This paper analyzes the source of the con�icting evidence from structural VARs identi�ed by

long-run restrictions on the e¤ect of technology shocks on hours worked reported in several recent

empirical studies. In this paper, we show analytically that the extreme sensitivity of the results to

di¤erent model speci�cations can be explained by a discontinuity in the solution for the structural

coe¢ cients implied by the long run restrictions, which arises only in the presence of a low frequency

correlation between hours worked and productivity growth. The critical mechanism underlying the

di¤erence between the levels and di¤erenced speci�cations, is that the di¤erenced speci�cation

restricts this correlation to zero when solving for structural model, whereas the levels speci�cation

allows it to enter in unrestricted manner. Consequently, it may not be surprising that alternative

�ltering approaches reported in the literature, such as HP �ltering and trend-break removal, which

remove this low frequency correlation, provide evidence supportive of the di¤erenced VAR. We also

demonstrate that low frequency correlations capable of causing strong discrepancies between the two

speci�cations are compatible with autoregressive roots in hours worked that are indistinguishable

from one. This sharp discontinuity implies that one cannot rely on univariate unit root tests to

resolve this debate, since they are not designed to discriminate between exact and near-unit root

models.

Fernald (2007) also highlights the role of an observed low frequency correlation in the data,

modeled as a common U-shaped pattern driven by structural breaks, and provides a number of

convincing empirical exercises to illustrate its importance. While this insightful analysis clearly

demonstrates the empirical link between the low frequency correlation and the con�icting results,

to date there has not been a full theoretical understanding of why this low frequency correlation

plays such an important role. We �ll this gap by showing, in a more general analytic framework,

that the key role played by this low frequency correlation is to create a discontinuity between the

structural solutions of the di¤erenced and levels speci�cations.
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The existing literature has unambiguously concluded that the low frequency correlation biases

the un�ltered levels VAR, but not the di¤erenced or �ltered speci�cation (Fernald 2007, Francis

and Ramey, 2009). This has provided renewed support for Gali�s (1999) in�uential �nding in

the face of earlier criticism from Christiano, Eichenbaum and Vigfusson (2003). By contrast,

our results indicate that the presence of low frequency correlation does not necessarily indicate

a problem with the levels speci�cation. Instead, it can result in very substantial biases in the

di¤erenced speci�cation. Indeed, we demonstrate that the biases in this speci�cation observed in

the simulations of Christiano, Eichenbaum and Vigfusson (2003) are due to essentially the same low

frequency correlation that Fernald (2007) and Francis and Ramey (2009) interpret as contaminating

the un�ltered levels speci�cation.

Therefore, we argue that the importance of the low frequency correlation cannot by itself resolve

the debate, because, depending on the way it is modeled, it may lead to biases in either the levels

or di¤erence speci�cation. However, in conjunction with Fernald (2007) and Francis and Ramey

(2009), our results help to clarify the terms of the debate. We demonstrate that if there is a

true low frequency correlation in the population model that is correctly identi�ed by the long-run

identi�cation restriction, then any procedure which removes this low frequency correlation, whether

by di¤erencing, HP �ltering, or trend-break removal would result in a very serious bias. In fact, we

�nd that one cannot reproduce the discrepancy in the results with any reasonable probability in a

correctly identi�ed model, without introducing such a true population correlation.16

The reason that this �nding might seem to be at odds with those of Fernald (2007) and Francis

and Ramey (2009), who both argue that the levels speci�cation is biased, is that neither model

the observed correlation as a true population correlation in a correctly identi�ed model. Fernald

(2007) argues that the observed low frequency correlation is purely coincidental, in which a similar

16While the levels VAR appears to provide a more reliable framework for analysis in this setup, it may also produce

biased and highly variable IRF estimates, especially when the root in hours worked is close or equal to one. Imposing

additional restrictions on the model (see, for example, Gospodinov, 2010) can lead to improved inference for the

structural parameters and impulse responses.
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pair of breaks occur in both series for unrelated reasons, due to historical happenstance. Francis

and Ramey (2009) treat the observed correlation as a true population correlation explained by

common low frequency trends in demographic and public employment, but argue that the long-run

restriction does not hold until these low frequency trends are purged from the data. In our view

the debate therefore hinges on the interpretation given to this low frequency correlation. If one

has reasons to believe that there is a genuine low frequency co-movement in a correctly identi�ed

model, this would support the �ndings of Christiano, Eichenbaum and Vigfusson (2003). On the

other hand, if one is convinced either that the observed correlation is coincidental (Fernald, 2007)

or that it is due to factors that violate the identi�cation restriction (Francis and Ramey, 2009) then

the results may be interpreted as supporting the earlier �ndings of Gali (1999). More generally, our

results also underline and help to explain the potential sensitivity of long-run identifying schemes

to uncertainty regarding low frequency dynamics, even when identifying characteristics at business

cycle frequency.
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Figure 1. Response of hours worked to a 1% positive technology shock, U.S. data 1948Q2 -

2005Q3. Top graph: hours worked in levels; Bottom graph: hours worked in �rst di¤erences.
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Figure 2. HP trends of labour productivity growth (top graph) and hours worked (bottom graph),

U.S. data 1948Q2 - 2005Q3.
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Figure 3. Impulse response functions computed from the levels (true) and di¤erenced speci�ca-

tions in a �rst-order VAR with � = 0:98;  = �1 (� = 0:02) and � =
 

1 �0:2
�0:2 0:8

!
:
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Figure 4. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 5. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 6. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 7. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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and T = 250: Solid

line: true IRF; long dashes: median Monte Carlo IRF estimate; short dashes: 95% Monte Carlo

con�dence bands.
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Figure 8. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model

"
I �

 
�0:05 �0:08
0:2 0:55

!
L

#"
I �

 
1 �(1� �)
0 �

!
L

# 
lt

ht

!
=

 
u1;t

u2;t

!
;

where � = 0:95;  = f�0:5;�0:2; 0; 0:2; 0:5g, (u1;t; u2;t)0 � iidN(0;�), � =

 
0:78 0

0 0:55

!
and

T = 250: Solid line: true IRF; short dashes: median Monte Carlo IRF estimate.

34



Figure 9. Response of hours to a positive technology shock (long-run identi�cation) with data sim-

ulated from the model
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Figure 10. Response of hours to a positive technology shock (short-run (Choleski) identi�cation)

with data simulated from the model
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